Application Note

光伏系统中电压升高的原因及预期的瞬态过电压

为了实现可持续发展的社会,可再生能源发电系统已然成为各界瞩目的热点。其中光伏发电成本低廉且安装简便,愈发受到青睐与追捧。

光伏(PV)系统电压升高的原因

减少电力传输过程中的能量损耗

将发电系统从1000V升级到1500V能够提高发电效率。当电流较大时,电力传输过程中的能量损失就会较高。 提高电压并降低电流能够减少能量损失。因此,光伏系统正朝着更高电压进行升级,目的是尽可能降低损失, 并最大限度地利用所产生的电能。

成本

1500V光伏系统的成本比1000V光伏系统更低。由于1500V系统中的光伏电池组串数量相较于1000V系统大约减少了75%,所以汇流箱、逆变器的数量以及电缆的长度都能相应减少。

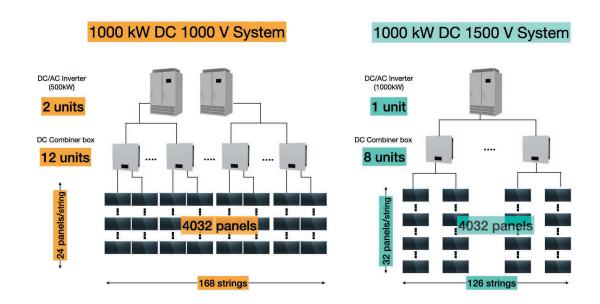


图1: 1000kW光伏电站中1000V和1500V系统示例

由于成本更低,1500V系统作为更为常见的1000V系统的替代方案,其受欢迎程度正不断提升。

光伏组件的测量等级

由于光伏系统设施的电压以及瞬态过电压正变得越来越高,与维护操作相关的危险性也在不断增加。安全标准 EN61010系列依据测量位置将测量划分为CAT II(测量等级 II)、CAT III(测量等级 III)以及 CAT IV(测量等级 IV)。等级的确定是基于对地额定电压、电流容量以及测量点出现的瞬态过电压情况。图2和表1展示了测量位置和测量等级。

此外,依据《光伏(PV)组件安全鉴定标准》(IEC 61730 - 1),光伏组件被视作过电压等级 CAT III。因此,出于测量目的,需要使用被归类为CAT III 的仪器。

Application Note

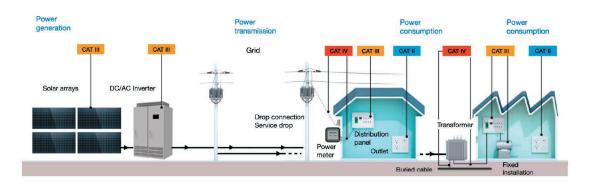


图2: 测量位置与测量等级

测量等级	描述		
CAT II	直接连接插座的设备的电源插头到设备的电源电路		
CAT III	直接从配电盘取电的设备(固定设备)的电源布线和电路,及配电盘与插座背面接线端子之间的电力线路		
CAT IV	到建筑物的引入电路、懂引入口导电表及配电盘的电路		

表1: 测量等级及测量位置示例

预期的瞬态过电压

工厂及类似场所中的电力线路可能会出现供电电压10倍的瞬态过电压(冲击电压)。必须提前预估各测量点的瞬态过电压情况,并且相关仪器需要具备能承受此类过电压的安全设计。表2展示了依据对地电压和测量等级列出的瞬态过电压要求清单。被归类为CAT III的1500V光伏系统,其瞬态过电压为10000V。

对地额定电压(V)	瞬态过电压(V)		
	CAT II	CAT III	CAT IV
300	2500	4000	6000
600	4000	6000	8000
1000	6000	8000	12000
1500	8000	10000	15000
2000	12000	15000	18000

表2: 根据对地电压和测量等级对瞬态过电压的要求

HIOKI 日置的解决方案

目前,1500V的太阳能装置正变得越来越受欢迎,但随着更大、更高效的系统出现,未来将需要能够支持更高电压的仪器。针对此类应用在近期内的发展前景,HIOKI日置研发了直流高压测试探头 P2010,以支持CAT III 的2000V测量。该产品经过专门设计,即便存在15000V的瞬态过电压,也能安全地进行测量。

Application Note

P2010的特点

- 1. 通过将 P2010 连接到 HIOKI日置钳形表或数字万用表 (DMM),可以安全地测量高达CAT Ⅲ 2000V的高压。
- 2. 测试线探头尖端的直径仅2.6mm,使其对断路器及有覆盖物的端子能够更为容易地进行探测。

与P2010兼容的型号介绍

与P2010兼容的日置钳形表和数字万用表具有一项功能,该功能可通过转换P2010降低后的电压来直接读取测量到的电压值。

2000A AC/DC钳形表 CM4373-50

具备600A和2000A两个量程,可用于测量范围广泛的光伏系统,从小型光伏装置到大型光伏系统均可测量。

1000A AC/DC钳形表 CM4375-50

- 新设计的"纤薄型钳口",能灵活对应拥挤、狭窄空间中的电流测量。
- 自动判别AC/DC并测量,无需切换量程即可测量交流和直流电流及电压,进一步提升工作效率。

数字万用表 DT4261

- 高防尘防水等级(IP54),适用于户外测量。
- 防止测试线误插设计,保障安全安心测试(端子保护功能)

与 GENNECT Cross 应用程序(APP)连接:

- 无线通讯可避免人工记录测量数据时出现的错误,节省人力的同时,还能大大地减少工时。
- 在合格与否判定的同时进行连续测量,即使在有许多测量点位的情况下,也能正确判定。

AC/DC CLAMP METER CM4373-50

AC/DC CLAMP METER CM4375-50

DIGITAL MULTIMETER DT4261

GENNECT CROSS SF4071.SF4072

随着规模更大且效率更高的系统投入使用,预计未来光伏系统的电压等相关参数会更高。HIOKI 日置将不断创出能够实现安全、高效测量的解决方案。

